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Quantum mechanics as classical mechanics plus quantum 
corrections: the cubic anharmonic oscillator 
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Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA 

Received 22 August 1988 

Abstract. The Rayleigh-Schrodinger perturbation series for the cubic anharmonic oscillator 
can be formally rearranged as the classical Birkhoff series plus quantum corrections 
proportional to successive powers of h 2 .  Each of the individual quantum corrections is a 
convergent power series expansion (with the same radius of convergence as the classical 
series) of the corresponding term in the Jeff reys-Wentzel-Kramers-Brillouin series. 

1. Introduction 

The relation between the Birkhoff normal form for a classical Hamiltonian and the 
Rayleigh-Schrodinger perturbation series for the corresponding quantum operator has 
been the subject of several recent investigations. Ali (1985) and Eckhardt (1986) 
pointed out that replacing the Poisson brackets in the Lie transformation formulation 
of classical perturbation theory by quantum commutators changes the classical 
algorithm to calculate the Birkhoff normal form into a quantum algorithm to generate 
the Rayleigh-Schrodinger perturbation series. Transforming to the Bargmann rep- 
resentation, Graffi and Paul (1987) have shown that (for multidimensional non-resonant 
perturbed harmonic oscillators) the algorithm of classical perturbation theory can be 
used to solve the quantum mechanical perturbation theory, with terms in powers of A 
‘correcting’ the classical potential. Wood and Ali (1987) reviewed the problem of 
direct quantisation of the classical Birkhoff series using as a model a general cubic 
and quartic anharmonic oscillator, and showed that no quantisation rule can recover 
the quantum series starting only from the classical series, pointing out the differences 
in term-by-term quantisation in the pure cubic and quartic cases. More recently Alvarez 
et al (1988) provided a complete description of the transition between classical 
mechanics and quantum mechanics for the x4 perturbed harmonic oscillator. It turns 
out that the quantum perturbation series rearranges directly into the classical Birkhoff 
expansion plus quantum corrections proportional to successively higher powers of A’ 
converging (subseries by subseries) to the terms of the Jeff reys-Wentzel-Kramers- 
Brillouin (JWKB) semiclassical expansion. The aim of the present paper is to prove 
similar results for the x3 perturbed harmonic oscillator, in which the x 3 -x symmetry 
is absent and the role of h in the scaling quite different. In the quartic anharmonic 
oscillator V = x2/2+ gx4, for coupling constant g 2 0 all the classical motions are 
bounded while for g < 0 there exists a separatrix. For fixed energy E > 0 the classical 
action J is defined as an analytic function in the complex g plane cut along the negative 
real axis from g = -( 16E)-’ to CO. The situation in the cubic anharmonic oscillator 
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V = x 2 / 2  + gx3 is completely different. For any value of g # 0, there exist both bounded 
and unbounded classical motions and therefore a separatrix (in quantum mechanics 
bound states no longer exist, only resonances). For fixed energy E > 0 the classical 
action J is defined as an analytic function in the complex g plane cut along both the 
positive and negative real axes from g = *(54E)-' to CO. Despite these differences, it 
will be shown that the full Rayleigh-Schrodinger perturbation series can be recovered 
from the semiclassical JWKB expansion and, through this construction, that the semi- 
classical series determines the exact resonant eigenvalues of the cubic oscillator. The 
analogous fact for the eigenvalues of even-perturbed oscillators was first noticed by 
Graffi and Grecchi ( 1 9 8 5 ) .  The structure of the quantum mechanical perturbation 
series is exposed in a complementary way to that in terms of Feynman diagrams 
suggested by Wood and Ali (1987) .  

The practical relevance of this analysis is emphasised by the work of Fried and 
Ezra ( 1 9 8 8 ) ,  in which they propose an algorithm to generate the classical series plus 
a finite number of quantum corrections in multidimensional systems. 

2. Analysis of the quantum mechanical perturbation series 

Consider the Schrodinger equation for the cubic anharmonic oscillator 

for which the scaling transformation x + ( h / m w ) 1 / 2 x ,  E = E / @ ,  renders the equivalent 
form 

The intuitive conjecture is that under the cubic perturbation the bound states of the 
harmonic oscillator will become resonances: the particle, initially in the potential well, 
will escape to x = a3 by tunnelling. Mathematically the problem is complicated because 
the potential goes so strongly to -CO. Nevertheless, it has been proved (Caliceti et a1 
1980, Caliceti and Maioli 1983) that there is a natural concept of resonances and that 
the Rayleigh-Schrodinger perturbation series is Bore1 summable to these resonance 
eigenvalues. 

Equation ( 2 )  is invariant under the simultaneous substitutions x + -x ,  g + -g .  
Consequently, all odd-order coefficients of the perturbation series are null: 

E ( g ) - - h  f E " ) ( g 2 h ) N  (3) 
N = O  

and the series is divergent, since the non-vanishing coefficients behave asymptotically 
(Alvarez 1988):  

where n is the usual harmonic oscillator quantum number. Moreover, using a Fourier 
representation (Silverstone 1978) it can be proved that E ( N )  is a polynomial in ( n  +$) 
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of degree N + 1 and parity (- 1)  N + l :  

where [ r ]  stands for the interger part of r. Table 1 gives the values of these polynomial 
coefficients up to N = 10. 

By virtue of equation ( 5 )  and denoting by J = ( n  + 1/2) h the ‘classical action’ (see 
the discussion in 9 3), the Rayleigh-Schrodinger series (3) can be formally rearranged 
as follows: 

E k )  - ( n  + t ) h  
+g’{Eb“[(n+f)h]’+ h2E\”} 
+ g 4 { ~ ~ 2 ’ [ ( n + f ) h ] 3 +  h 2 ~ ( , 2 ’ [ ( n + t ) h ] }  
+ g6{  EL^'[( n + f) h l4 + h ’ ~  \3’[( n + f) h 3’ + h 4 ~ i 3 ’ }  
+.. . 

= E,(J, g 2 ) +  A 2 E l ( J ,  8’) + h4E2(J,  g’) +. . . 
with the Ek defined by 

00 

Eo(J, g’) = J + J  E y ) ( g 2 J ) N  
N = l  

Table 1. Rayleigh-Schrodinger perturbation theory energy coefficients for the x3 perturbed 
harmonic oscillator as polynomials in n +f: coefficients EL”) of ( 5 )  in the text multiplied 
by -4N. 

1 0  
1 1  

2 0  
2 1  

3 0  
3 1  
3 2  

4 0  
4 1  
4 2  

5 0  
5 1  
5 2  
5 3  

6 0  
6 1  
6 2  
6 3  

60 7 0  
7 7 1  

7 2  
11 280 7 3  
4 620 7 4  

3 704 160 8 0  
3 344 880 8 1  

202 958 8 2  
8 3  

1533962304 8 4  
2473621920 

517 773 396 9 0  
9 1  

723 154 199 040 9 2  
1844044392960 9 3  

849337282080 9 4  
38 008 581 072 9 5  

201158359894103040 
lo34954374948623360 
1354179181521479040 

454335713959279680 
17 170 481 745 607 092 

113999847953961784320 
777192185748823004160 

1491257719745410409856 
895492413985388281920 
114892678503242999604 

66769249690003994664960 
584129752829918521712640 

1554154955972830234383360 
1482588050328357994728960 

416470110232500563672160 
14171193 177483475548800 

370492639165440 10 0 40 141 485 640 273 528 509 972 480 
1380 009 990 078 720 10 1 439288308727505086103654400 
1137723951981120 10 2 1554436081034982981520312320 
173935618884720 10 3 21775880736476692174992611440 

10 4 1094056746964689583045696320 
10 5 125 793 460 743 631 174 290 997 200 
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Thus, the Rayleigh-Schrodinger series decomposes formally as a power series in h2 .  
The purpose of the following section is to show that Eo is the convergent classical 
Birkhoff series, to determine its radius of convergence, and to show that the Ek with 
k > 0 are also convergent series, with the same radius of convergence, for the corre- 
sponding terms of the JWKB expansion. 

3. The Jeffreys-Wentzel-Kramers-Brillouin series 

By means of the h-independent scaling x -+ ( m ~ ) - ’ / ~ x ,  E = & / U ,  the Schrodinger 
equation (1) turns into the equivalent form 

The JWKB expansion for the wavefunction is 

@ = exp( I S dx) 

a3 

s= 1 hNS‘”(X)  
N = O  

and the JWKB function S(x)  satisfies the Riccati equation 

i d S  
2 dx 

3s - -h-+fx2-gx3-E=0 

which allows recursive evaluation of the S ( N ) .  In particular, one obtains 

S(O) = J 2 E  - x2 + 2gx3 

The quantisation condition is given by Dunham’s formula (Dunham 1932): 

S dx = nh 
2T 

where the path of integration in the complex plane encloses the two turning points x- 
and x+ in the well [x, - * (2E)”’+O(g)]. For later reference, x1 will denote the third 
turning point [xl - (2g)-’+O(g)]. From the computational point of view the main 
difference between the cubic and the quartic oscillators (Alvarez et al 1988) is that in 
the quartic case parity reduces the determination of the turning points to the solution 
of a simple quadratic equation. Although it is possible to find closed form expressions 
for the three turning points in the cubic oscillator (roots of a cubic polynomial), it is 
more convenient for our present purpose to work directly with the convergent 
expansions for x-, x+,  and x, given in the appendix. 
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To lowest order in h, equation (12) is equivalent to the classical Hamilton-Jacobi 
equation. The classical action is 

where F stands for Gauss's hypergeometric function and a = (x+ - x-)/(xl  - x-). 
Equation (17) can be readily expanded in a convergent series whose first terms are 

J =  E + y g 2 E 2 + F g 4 E 3 + .  . . (18) 

(19) 

and inversion of this series gives the classical Birkhoff expansion: 
E=J- '5  2 2 - 7 0 5  4 3 -  4g 1 6 g  

Its radius of convergence can be determined by the same argument used by Turchetti 
(1984) in the quartic case: the value of J at the energy E = 1/54g2 corresponding to 
the separatrix is given by 

L f 4 2 E  -x2+2gx3=- 1 
27r 151rg~'  

Consequently, the series converges for 1g2JI < 1/157r, and according to equation (16), 
to this order quantisation amounts to the substitution J = nh. 

Since S(l) is essentially the logarithmic derivative of S(O), the next term from equation 
(16) is simply 

which induces the substitution J = ( n  +&) h in the classical Birkhoff expansion (equation 
(19)) giving rise to the leading contribution E,(J, g') (equations (6) and (7)) in the 
analysis of the Rayleigh-Schrodinger perturbation series. 

The general method to evaluate higher-order terms is as follows. First, evaluate 
the corresponding S(N) .  For odd N 3 3, the integral $ S ( N )  dx vanishes. For even N, 
repeated integration by parts can be used to reduce the integral to an equivalent 
expression which can be calculated by shrinking the path to the interval (x-, x,) in 
the real axis (Krieger et a1 1967). For example, for N = 2 

d 
d E  

=- Il (E) .  

Then, expand the energy in equation (16) as a power series in h and collect terms of 
the same order. Since only even powers of h are non-zero on the left-hand side of 
equation (16) (except the first which gets absorbed in the definition of J ) ,  only even 
powers of h occur in the expansion of E (in agreement with equation (6)). The result 
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is that the Ek with k > 0 are given explicitly in terms of hypergeometric functions, x + ,  
x - ,  x ,  and their derivatives evaluated at Eo. Only Eo itself is given as the solution of 
an implicit equation. For example, 

7 4620 

whose first terms can be identified with the corresponding coefficients in table 1. 
Moreover, from the closed form expression for each Ek that gives rise to the power 
series in g it is easy to see that all the substitution of power series are carried inside 
their radii of convergence, the final radius of convergence being determined by E o .  

4. Numerical behaviour 

Graffi and Grecchi (1985) have already observed that for even-perturbed harmonic 
oscillators the JWKB expansion determines the exact eigenvalues. A similar conclusion 
with respect to the resonances of the cubic anharmonic oscillator can be drawn from 
the preceding analysis. By power series expansion and rearrangement of the terms of 
the JWKB series, the Rayleigh-Schrodinger perturbation series can be recovered, and 
from the latter the exact resonances can be calculated via Bore1 summation. 

As far as partial sums are concerned, the analysis of the Rayleigh-Schrodinger 
series as the classical series plus quantum corrections provides insight into the 
asymptotic nature of the full quantum series. Figure 1 shows the partial sums of the 
first four quantum corrections E , ,  . . . , E4 for the ground state n = 0 and coupling 
constant g = 0.15 (inside the radius of convergence of the individual series). The kth 
quantum correction starts at 2 k  - 1 (see equation (8)) and since all the terms have the 
same sign, the partial sums converge monotonically towards the JWKB value. Note 
that this converged value decreases in magnitude from E ,  to E2 (which in this case 
would be the ‘optimal’ term to keep in the asymptotic expansion) and then increases 

c .- + 
E 
s 

€2 - 

€3 

€1 

- 0 . 0 4  - - 

-0.06 - - 

-0.08 - - 

- 0 . 1 0  - EL - 

€2 - 

€3 

€1 

- 0 . 0 4  - - 

-0.06 - - 

-0.08 - - 

- 0 . 1 0  - EL - 

- 0 . 1 2 ’  I 
0 10 20 30 40 

Order in g2 

Figurel. Partialsumsoftheperturbationseriesforthequantumcorrections EA,  k = 1,. . . ,4, 
as a function of perturbation theory order, for the ground state n = 0 and coupling constant 
g =0.15 (inside the radius of convergence). 
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in magnitude from E? on, leading to the overall divergence. Besides, the convergence 
of the individual series is of course non-uniform in k. This behaviour is also manifest 
in the partial sums of the JWKB series shown in figure 2 for n = O  and g =0.01 ( E ,  is 
not displayed to allow for an appropriate scale). 

0 .48450  I , I 

0 . 4 8 4 0 0 '  ' ' I 
4 8 12 16 20 

Order in f ;  
Figure 2. Partial sums of the JWKB series as a function of the order in h, for the ground 
state n = 0 and coupling constant g = 0.01. The value of E,  (not displayed to allow for an 
appropriate scale) is 0.490 009 0975. . . . 

5. Summary 

To examine in full detail the relation between the classical Birkhoff expansion and 
the quantum Rayleigh-Schrodinger perturbation theory for the cubic anharmonic 
oscillator, the quantum series has been rearranged as the classical series plus quantum 
corrections proportional to successive powers of h2 .  Each of the individual quantum 
corrections turns out to be a convergent power series expansion (with the same radius 
of convergence as the classical series) of the corresponding term in the Jeffreys- 
Wentzel-Kramers-Brillouin series. As a by-product of this analysis, it has been shown 
that the JWKB series determines completely the resonances of the cubic anharmonic 
oscillator. 

From the numerical point of view, inside the classical radius of convergence the 
partial sums of the classical series plus a finite number k of quantum corrections tend 
(as the order of perturbation tends to infinity) to the corresponding JWKB partial sum 
Eo+ h 2 E ,  +. . .+ h2kEk.  The JWKB series itself seems to be asymptotic and, for any 
fixed values of g and J, it will ultimately diverge if enough number of quantum 
corrections are added. 
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Appendix 

The purpose of this appendix is to provide convergent series representations for the 
three real roots of 

E - &x' + gx3 = 0 (-41) 

when g 2 0 and 0 S E < 1/54g2. With the notation z = 2gx, E = 8g2E (OS E <$), 
consider the roots z,  , z1  of z3  - z2  + E = 0 as an algebraic function of E in a neighbour- 
hood of E = 0. The root which comes from z = 1 can be readily expanded in Taylor 
series, with radius of convergence 1 E I < A, 

where 

The first terms of the series are 

Z I =  1 - E  - 2 ~ ~ - 7 ~ ~  - 3 0 ~ ~ -  1 4 3 ~ ~  - 7 2 8 ~ ~  - ,  . . . (-44) 
The roots z ,  which come from z = 0 are the two branches of a Puiseux series (Taylor 
series in z " ~ ) ,  

00 

z+= C n E n l 2  
n = l  

with radius of convergence ( E ' / ' I  < ( $ ) ' I 2 ,  and 

c1= 1 2 - 2  
-1 

The first terms of this series are 
z*= & 1 / 2 + & & + ~ & 3 / 2 + & ' + = & 5 / 2 + ~ & 3 + .  128 . , 
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